在现代汽车行业,自动驾驶技术的发展日新月异,数据的实时传输与处理能力愈发受到重视。光路科技的工业级TSN交换机在比亚迪新车型的成功应用,为这一技术领域注入了新的活力。这种交换机不仅解决了传统网络设备在高时延和低数据精度方面的局限性,还通过引入TSN(时间敏感网络)协议,为自动/辅助驾驶系统提供了高效、可靠的数据处理环境。
自动驾驶系统依赖于来自多种传感器的数据,包括雷达、激光雷达、摄像头等。这些传感器需要实时采集并传输大量数据,以便系统做出快速决策。以比亚迪的应用场景为例,雷达的双向数据监控与采集要求对数据精度有严格的控制。传统的网络交换机在高负荷工作情况下,容易出现时延过高和数据丢包现象,这使得系统无法及时响应环境变化,影响驾驶安全和车辆的整体性能。
光路科技的TSN交换机在设计中特别考虑了汽车环境的独特需求,具有多个显著的技术优势。首先,交换机支持专用的汽车以太网TSN协议,这是其能够满足自动驾驶要求的核心所在。该协议的设计宗旨是提供高带宽、低延迟和高可靠性的网络连接,尤其适用于数据传输频繁且对时效性有严格要求的场景。
高精度时钟同步:
TSN交换机配合车载激光雷达实现的对时精度可达微秒级,极大提升了数据采集的准确性。采用IEEE 802.1AS协议,能够在网络中实现精准的时钟同步,为实时数据处理提供了坚实的基础。这种微秒级的同步能力使得多个传感器的数据能够在同一时间基准下进行处理,避免了因时钟不同步而导致的数据不一致问题。
抖动偏差为零:
高精度的时钟同步还意味着数据传输的抖动偏差为零。这一特性对于自动驾驶系统更加重要,因为在复杂的行驶环境中,任何微小的延迟或数据偏差都可能影响系统的决策精度,进而影响车辆的安全。
快速响应与稳定性:
光路科技的交换机在配置时钟锁定时,能够快速响应,保障在不同工作条件下系统的稳定运行。在车辆高速行驶或复杂环境下,能让数据传输保持高效稳定。
支持多种数据流:
在自动驾驶中,除了雷达数据外,还需要处理来自摄像头和其他传感器的数据。TSN交换机能够同时支持多种数据流,确保不同传感器的数据能够在网络中平滑地传输,不会因为单一数据流的延迟影响整体系统的反应。
简化配置与维护:
光路科技的交换机设计了用户友好的配置界面,简化了设备的安装和维护过程。即使在复杂的车辆网络中,工程师也能快速进行设备的设置与调整,减少了因人为操作失误导致的系统故障。
在车载测试中,时钟同步的精度是决定系统性能的关键因素。光路科技的TSN交换机通过IEEE 802.1AS协议,实现在整个网络中对时的统一性。该协议允许设备在网络中交换时间信息,让每个设备的时钟都能保持一致。
光路科技的FR-TSN系列工业交换机在自动/辅助驾驶领域的应用,不仅提高了数据采集的精度,还为系统的稳定性和安全性提供了技术保障。通过高效的时钟同步能力、零抖动特性以及灵活的配置选项,TSN交换机能够满足现代自动驾驶系统对数据传输的严格要求。
随着汽车智能化进程的加速,光路科技的TSN交换机将继续在这一领域发挥关键作用,推动自动驾驶技术的广泛应用和发展。这些技术为未来的智能交通系统奠定了坚实的基础,汽车行业将向更高水平的智能化迈进。
关于6G的研发进展,全球各国及研究机构均在进行积极的探索与投入,并已取得了显著进展,中国在6G技术领域的领先地位尤为突出。
2024年2月,美国联合英国、法国、日本、韩国、瑞典、芬兰、捷克、加拿大和澳大利亚发表联合声明,就6G研发达成共同原则,支持“安全、有弹性并能保护隐私”,加速6G落地。这表明多国在6G研发上已达成共识,并开始协同推进。
欧盟对6G研发尤为重视,通过资金支持、成立重大项目联合组织和积极寻求合作等方式加大研发投入。例如,SNS JU(智能网络与服务联合组织)作为欧盟6G研发的重要平台,已规划了智能网络技术发展路线图,对5G和6G技术研发阶段进行了详细规划,并发布了多批科研项目征集指南,鼓励研究机构和企业团体参与研发创新。SNS JU的治理架构包括管理董事会、成员国代表小组、执行总监和各方代表小组等机构,共同推动6G技术的研发与标准化进程。
中国在5G/6G赛道上积极投入,发展进程与美国不遑多让,甚至已有领先之势。自5G技术商用初期,中国便开始布局6G的研发工作。2019年,中国正式成立了国家6G技术研发推进工作组和总体专家组,标志着6G研发工作的全面启动。
2024年7月11日,中国工程院院士、北京邮电大学教授张平团队成功搭建了国际首个通信与智能融合的6G外场试验网。这一成果不仅验证了4G、5G链路具备6G传输能力的可行性,还实现了6G主要场景下通信性能的全面提升,为未来的6G商用化奠定了坚实基础。
在2024全球6G技术大会上,中国展示了多项6G前沿技术成果,如6G无线覆盖扩展技术、无线网络安全架构关键技术、天地融合的6G卫星通信技术等,彰显了中国在6G技术研发领域的领先地位。
中国已进入5.5G商业化阶段,为下一步实现6G加速开展试验工程。未来,中国将继续加大在6G技术研发上的投入,推动6G技术的商用化进程,并积极参与全球6G标准的制定与竞争。
6G的关键技术大致可分为无线通信、无线组网和网络架构三大技术领域,涵盖了多个技术方向,这些技术共同构成了6G网络的核心竞争力。
超大规模MIMO(Multiple-Input Multiple-Output):
超大规模MIMO技术通过增加天线数量,显著提高频谱效率和系统容量。在6G系统中,天线数量将进一步增加,以支持更高的数据传输速率和更多的用户连接。这一技术能够更好地利用空间资源,提高信号传输的稳定性和可靠性。
空口AI(Air Interface Artificial Intelligence):
空口AI技术将人工智能引入无线通信领域,通过智能算法优化网络配置和资源分配,提升网络性能和用户体验。该技术能够实时分析网络状态和用户行为,自动调整通信参数,降低延迟和功耗,提高通信效率。
新型无线传输技术:
包括太赫兹通信、可见光通信等新型无线传输技术,这些技术能够利用更高的频段实现更高的数据传输速率和更低的延迟。太赫兹通信利用太赫兹波段的频谱资源,提供极高速的数据传输能力;可见光通信则利用可见光作为传输媒介,实现高速、安全的数据传输。
异构融合组网:
异构融合组网技术是一种面向全频段深度融合的网络架构,通过整合低频段、中频段、高频段乃至太赫兹、可见光等更高频段的频谱资源,实现无缝网络覆盖和高效频谱利用。该技术能够根据不同应用场景的需求,灵活配置网络资源,提高网络的整体性能和用户体验。
通信感知一体化:
通信感知一体化技术将通信和感知两大功能协同起来,实现信息的精准传递和环境的智能感知。该技术通过无线信号进行数据采集和高速实时数据分析,形成高精度的定位、成像、动作识别等能力,为“万物智联”奠定坚实基础。例如,在远程医疗中,医生可以通过高精度的定位和环境感知技术,进行更准确的手术指导;在自动驾驶中,车辆可以通过感知技术实时获取周围环境信息,实现安全驾驶。
新型网络架构:
6G网络将采用更加灵活和可扩展的新型网络架构,以支持多样化的应用场景和高效的资源管理。这些网络架构可能包括软件定义网络(SDN)、网络功能虚拟化(NFV)等技术,通过软件化和虚拟化手段实现网络功能的灵活配置和快速部署。
内生安全技术:
内生安全技术将安全机制融入网络架构的各个层面,从根本上提高网络的安全性和可靠性。该技术通过智能算法和实时监控手段,及时发现并应对网络攻击和安全隐患,保障用户数据和隐私的安全。
无蜂窝架构:
无蜂窝架构是一种创新的网络架构模式,通过分布式大规模MIMO技术和多接入点协作,实现无缝覆盖和均衡的性能提升。该架构将基站进行拆分,通过多设备进行联合信号处理,使信号源离用户更近,提高频谱利用率和网络容量。例如,在未来的智能工厂中,无蜂窝架构可以实现设备间的即时通信和高效协作,提高生产效率并降低能耗。
语义通信是一种新兴的通信技术,它不同于传统通信主要关注信号或数据的高效、准确传输,而是强调对信息“意义”或“语义”内容的传输和理解。语义通信以任务为主体,采用“先理解,后传输”的通信新范式,旨在使接收方能够准确理解发送方的意图,而不仅仅是接收到的数据本身。
语义通信技术通过引入自然语言处理、机器学习等人工智能技术,对通信内容进行语义层面的分析和处理。在发送端,系统首先理解发送信息的语义内容,然后将其编码为适合传输的格式;在接收端,系统则对接收到的信号进行解码,并恢复出原始的语义内容。这一过程中,系统能够自动适应不同的通信环境和任务需求,实现更加灵活和高效的通信。
语义通信方法将成为6G技术的重要组成部分,通过训练人工智能实现信息的精准传递和理解,推动AI向通用人工智能迈进。语义通信技术作为6G的关键技术之一,将在未来通信领域发挥重要作用,有望为人类社会带来更加智能、高效和便捷的通信体验。
6G和工业以太网之间存在一定的关系与影响,尽管它们分别属于无线通信技术和有线通信技术领域,但在工业互联网的广阔背景下,两者共同促进着工业领域的数字化转型和智能化升级。
工业以太网作为一种有线通信技术,以其高可靠性和稳定性,在工业自动化和控制系统中表现出色。它适用于对实时性、可靠性和安全性要求极高的工业环境。6G作为下一代移动通信技术,具备更高速率、更低时延、更大连接数和更高可靠性的特点。在工业场景下,6G的无线接入能力能够弥补工业以太网在移动性和灵活性方面的不足,实现设备间的无线互联和远程监控。
在工业互联网中,6G和工业以太网可以实现深度融合应用。例如,通过6G技术实现设备的无线接入和远程数据传输,同时利用工业以太网进行本地网络构建和数据交换,形成无缝连接的工业网络环境。这种融合应用将进一步提升工业系统的智能化水平,支持更复杂的工业应用场景,如智能制造、智能工厂、智能物流等。
6G和工业以太网的协同发展将推动工业产业的数字化转型和智能化升级。通过提升网络通信能力和数据处理能力,支持更多基于数据驱动的工业应用,提高生产效率、降低运营成本、优化资源配置。
同时,随着6G技术的不断成熟和商用部署,将为工业以太网带来新的发展机遇,推动其在更广泛的工业领域中得到应用和推广。
尽管6G和工业以太网在技术上具有一定的互补性,但两者的融合应用仍面临诸多挑战,如频谱资源分配、网络架构设计、设备兼容性等。为了促进6G和工业以太网的融合应用,需要加强相关技术的标准化工作,确保不同厂商的设备之间能够实现互操作性。
另外,随着工业互联网的快速发展,网络安全和隐私保护问题日益凸显。在6G和工业以太网的融合应用中,需要加强对数据安全和隐私保护的研究和投入,确保工业系统的安全稳定运行。
6G作为下一代移动通信技术,其应用前景极为广阔,将在多个领域带来革命性的变革。
6G网络将实现更高的传输速率、更低的时延、更大的连接密度和更智能的网络管理,推动通信技术进入一个全新的时代。这些特性将使得6G网络成为连接物理世界与数字世界的桥梁,加速经济社会数字化转型的进程。
实时通信与协作:6G网络将实现车辆之间的实时通信和协作,提升交通安全和效率。自动驾驶汽车可以通过6G网络实现毫秒级的信息交换,迅速感知周围环境并做出精准的驾驶决策。
智能交通系统:在6G的支持下,智能交通系统将变得更加高效和安全。通过6G网络的大连接数和高可靠性特性,数百万的传感器和设备可以实现实时连接和通信,为城市提供全面的数据支持和管理能力。
高清视频与实时交互:6G技术将提供更高的速率和更低的延迟,使得远程医疗中的高清视频会诊、远程手术指导等成为可能。医生可以实时获取患者的高清影像数据,进行精准的诊疗决策,极大地提高医疗服务的效率和质量。
医疗数据共享:6G网络将支持医疗数据的实时传输和共享,促进医疗资源的优化配置。医院之间可以更加便捷地共享病历、影像等医疗信息,提高医疗服务的协同性和整体效能。
智能健康管理系统:6G技术将支持医疗设备和穿戴设备的互联互通,实现对患者健康数据的实时监控和分析。智能健康管理系统可以通过6G网络及时发现和预警健康风险,提供个性化的健康管理方案,从而提升全民健康水平。
自动化与智能化生产:6G技术将实现更加自动化和智能化的生产流程。工厂中的各种设备可以通过6G网络实时连接和交换数据,实现生产流程的自动化控制和优化。
工业物联网:6G网络将支持更多设备的连接和交互,为工业物联网的发展提供强大支撑。通过6G网络,工业设备可以实现更加高效的数据采集、传输和处理能力,提升工业生产的智能化水平。
高效城市管理与服务:6G技术将促进城市管理的智能化和高效化。通过6G网络的大连接数和高可靠性特性,城市中的各种传感器和设备可以实现实时连接和通信,为城市管理提供全面的数据支持和服务能力。
智能安防与应急响应:6G网络将支持智能安防系统的建设和发展。通过实时视频监控、人脸识别等技术手段,城市可以实现更加高效和精准的安防管理。同时,在突发事件发生时,6G网络可以迅速提供应急通信和救援支持。
沉浸式体验:6G技术将彻底改变虚拟现实(VR)和增强现实(AR)技术的应用体验。得益于6G的超高速率和低时延特性,用户可以在没有任何延迟的情况下享受超高清的虚拟现实和增强现实体验。
互动娱乐与在线教育:在6G网络的支持下,互动娱乐和在线教育等领域将迎来新的发展机遇。用户可以通过6G网络享受更加逼真和沉浸式的游戏体验和学习体验。
综上所述,6G技术的应用前景极为广阔,将在远程医疗、智能交通、智能制造、智慧城市建设以及虚拟现实与增强现实等多个领域发挥重要作用,为经济社会数字化转型提供强大支撑。
据研究机构预测,到2040年全球6G市场规模将超过3400亿美元,其间年复合增长率将达58.1%。中国作为全球最大的6G市场之一,将在6G技术的商用化进程中发挥重要作用。关于商用时间,曾有专家预测6G将在2030年左右实现商用。未来3-5年将成为6G潜在关键技术的窗口期,各国和企业将加大在6G技术研发和商用化方面的投入。
IEEE 802.1Qbv是IEEE 802.1家族中的一项重要标准,专门针对实时流量的时间敏感性进行优化。这一标准在网络通信领域,特别是在对实时性要求极高的应用中,如音视频传输、工业自动化、智能交通系统等,具有极其重要的地位。
在传统的以太网网络中,数据包的传输受到多种机制的影响,如碰撞检测和随机后退等。这些机制虽然在一定程度上确保了网络的稳定性和公平性,但也带来了数据包传输时间的不确定性。对于实时应用程序来说,这种不确定性可能导致音视频质量下降、控制信号延迟等问题,从而影响用户体验和系统性能。
为了解决这个问题,IEEE 802.1Qbv引入了时间感知调度机制。这一机制允许网络设备根据预先定义的时间表对数据包进行排队和传输,从而确保实时数据包在网络中的传输受到严格的时间约束。具体而言,IEEE 802.1Qbv通过引入时隙机制,将网络带宽划分为固定长度的时隙,并为不同类型的流量分配不同的时隙。这样,网络管理员就可以根据应用程序的要求,为实时流量分配足够的带宽和优先级,从而满足对延迟和时序性的高要求。
除了引入时间感知调度机制外,IEEE 802.1Qbv还支持多个优先级,并允许网络管理员根据应用程序的要求配置这些优先级。通过将高优先级流量调度到网络中的更高优先级时隙,IEEE 802.1Qbv可以确保对实时流量的快速响应。这一特性使得IEEE 802.1Qbv在需要同时处理多种类型流量的网络中表现出色,能够确保实时流量得到优先处理,从而满足各种应用场景的需求。
值得一提的是,为了确保网络中各个节点的时钟同步,IEEE 802.1Qbv还依赖于时间同步协议,如IEEE 1588 Precision Time Protocol(PTP)。这一协议能够确保所有设备在同一个时间基准上进行调度,从而消除由于时钟偏差导致的传输延迟和时序问题。通过与PTP等时间同步协议的配合使用,IEEE 802.1Qbv能够提供更加精确和可靠的时间感知调度功能。
光路科技的TSN交换机引用了IEEE 802.1Qbv协议,这意味着该交换机能够支持时间感知调度功能,为实时流量提供优先处理。这使得光路科技的TSN交换机在需要处理实时流量的场景中表现出色,如工业自动化、智能交通系统等领域。通过使用光路科技的TSN交换机,用户可以确保实时流量在网络中得到优先处理,从而满足对延迟和时序性的高要求,提升整体系统性能和用户体验。
综上所述,IEEE 802.1Qbv作为一项针对实时流量时间敏感性进行优化的重要标准,在网络通信领域具有广泛的应用前景。通过引入时间感知调度机制和支持多个优先级,IEEE 802.1Qbv为实时应用程序提供了可靠的网络基础设施,满足了各种应用场景对延迟和时序性的高要求。同时,通过与时间同步协议的配合使用,IEEE 802.1Qbv能够确保网络中各个节点的时钟同步,消除传输延迟和时序问题。这使得IEEE 802.1Qbv在工业自动化、智能交通系统、音视频传输等领域具有广泛的应用价值。
随着全球范围内工业4.0的浪潮不断涌动,工业互联网作为其核心驱动力,正引领着工业生产向智能化、网络化的崭新阶段迈进。在这一转型的浪潮中,光路科技凭借其卓越的工业互联设备与创新解决方案,正为工业互联网领域的发展注入新的活力,并持续推动其向前发展。
在工业环境中,设备的稳定性和可靠性很重要。在这样的场景下,任何一次设备故障或网络中断都可能导致生产线停滞、产品质量下降甚至安全事故的发生。因此,对于工业以太网交换机而言,除了基本的通信功能外,还需要具备在各种恶劣环境下稳定运行的能力。
光路科技作为一家全球领先的工业互联设备和解决方案提供商,深谙工业环境中的种种挑战。为此,公司投入大量研发力量,致力于提升工业以太网交换机的稳定性和可靠性。其生产的交换机产品具备出色的防护等级和电磁兼容性,能够在高温、低温、潮湿或高电磁干扰的恶劣环境下保持稳定的运行状态。
具体而言,光路科技的工业以太网交换机采用了先进的散热设计、耐候材料以及电磁屏蔽技术,确保在极端天气或复杂电磁环境下仍能正常工作。此外,产品还通过了严格的质量检测和环境适应性测试,以确保在各种应用场景下都能提供稳定、可靠的网络连接。
正是凭借这种高度可靠的性能,光路科技的工业以太网交换机成为了众多企业的首选设备。它不仅能够确保工业网络的持续稳定,为企业的生产运营提供坚实的保障,还能够降低因设备故障或网络中断带来的损失和风险。
光路科技始终将技术创新作为公司的核心竞争力,站在工业以太网交换机技术的最前沿,不断追求创新与突破。这种对技术的执着追求,使得光路科技能够持续推出领先市场、满足用户需求的产品。
其产品不仅支持高速、稳定的通信,确保数据传输的高效性和准确性,还具备网络冗余和备份机制,为企业的网络安全提供了强大的保障。当部分网络出现故障时,光路科技的工业以太网交换机能够迅速切换到备份路径,保持通信的连续性,确保企业的生产运营不受影响。
此外,光路科技的产品还具有高度灵活和可扩展的特性。无论是智能工厂、能源管理还是交通物流,光路科技的工业以太网交换机都能够适应各种应用场景,满足企业不断增长的需求。企业可以根据自身的网络架构和业务需求,灵活配置交换机的端口数量、传输速率等参数,实现个性化的解决方案。
值得一提的是,光路科技自主研发的TSN(时间敏感网络)工业交换机,是公司在技术领域的又一重大突破。TSN交换机能够确保网络中的数据传输具有严格的时间确定性,满足工业自动化对实时性的要求。通过引入TSN技术,光路科技的工业以太网交换机在工业自动化领域的应用得到了进一步拓展,为企业的智能化转型提供了有力支持。
光路科技在工业互联网领域的广泛应用,无疑证明了其工业以太网交换机的卓越性能和市场价值。无论是在智能电网、轨道交通还是智能交通、智能煤矿和智能制造等领域,光路科技的产品都发挥着关键的作用。
在智能电网领域,光路科技的工业以太网交换机提供了稳定、高速的数据传输通道,确保了电网监控、调度和管理的实时性。通过与其他设备的协同工作,交换机实现了对电网设备的远程监控和智能控制,有效提高了电网的运行效率和稳定性。
在轨道交通领域,光路科技的工业以太网交换机为列车控制系统提供了可靠的通信保障。交换机的高速传输和稳定性能,确保了列车控制系统数据的实时传输和准确处理,为轨道交通的安全、高效运行提供了有力支持。
而在智能交通领域,光路科技的工业以太网交换机则助力实现了城市交通的智能管理。通过与交通信号灯、摄像头、车辆传感器等设备的连接,交换机实现了对交通状况的实时监控和智能调度,有效缓解了城市交通拥堵问题,提升了交通系统的整体运行效率。
在智能煤矿领域,光路科技的工业以太网交换机为煤矿的自动化生产提供了坚实的网络基础。交换机的高可靠性确保了煤矿生产数据的稳定传输,为煤矿的安全生产提供了有力保障。
最后,在智能制造领域,光路科技的工业以太网交换机更是发挥了重要作用。通过与生产设备的连接和协同工作,交换机实现了对生产过程的实时监控和智能控制,有效提高了生产效率和产品质量,降低了生产成本。
光路科技的工业以太网交换机在各个领域的应用,不仅提供了高速、稳定的通信服务,还通过与其他设备的协同工作,实现了对各种设备和系统的智能化管理和控制。这种全面的解决方案不仅提高了企业的运营效率,还降低了运营成本,为客户创造了巨大的商业价值。
随着工业互联网的迅速崛起和持续发展,光路科技深知自身肩负着重要的使命和责任。作为业界领先的工业互联设备和解决方案提供商,光路科技始终将高可靠、高安全作为其核心价值观,并致力于将这些原则融入其工业以太网交换机的设计和制造中。
为了应对工业互联网领域日益增长的需求和挑战,光路科技将持续加大研发投入,对工业交换机进行持续的创新和升级。通过引入先进的技术和理念,光路科技将不断提升其产品的性能和功能,以满足不同行业和场景的需求。同时,光路科技还将积极关注行业发展趋势,与合作伙伴紧密合作,共同推动工业交换机的技术进步和应用拓展。
此外,光路科技将继续深化其在各领域的应用,将工业以太网交换机广泛应用于智能电网、轨道交通、智能交通、智慧矿山、智能制造等领域。通过与各行业的深度融合,光路科技将为其客户提供更加全面、高效的解决方案,助力企业实现数字化转型和智能化升级,从而推动工业互联网的繁荣和发展。
随着时间的推移,网络通信在过去几十年里经历了巨大的演进,从最初的简单数据传输发展到今天复杂而高度智能化的体系。这个演进的过程带来了前所未有的便利,使得信息传递在全球范围内变得更加高效。然而,随着网络的快速发展,日益增长的网络流量对性能提出了更为严苛的要求。
网络流量的爆炸式增长,主要受到云计算、物联网、高清视频以及实时应用等因素的推动,使得传统网络在应对大规模数据传输和实时通信方面面临着一系列挑战。在这个背景下,引入确定性网络(Deterministic Networking)成为解决这些挑战的关键。确定性网络以其独特的特征和技术,为网络通信赋予了更高的可预测性和稳定性,从而能够更好地应对当今网络环境中的需求。
在这篇文章中,我们将深入探讨确定性网络的概念、优势以及在不同领域的应用。我们将揭示这一技术的核心原理,以及如何通过它来实现低延迟通信、提高网络稳定性,以及优化资源利用。同时,我们还将探讨确定性网络面临的挑战,并展望这一技术在未来网络发展中的潜在影响。通过这一全面的介绍,我们希望读者能更好地理解和认识确定性网络,并认识到它在推动网络通信进步方面的关键作用。
确定性网络是一种网络通信体系,旨在提供高度可预测、稳定和可控的通信环境。与传统网络相比,确定性网络通过优化数据传输路径、时间敏感的协议和智能流量管理,以确保数据在网络中的传输能够在预定时间内达到目的地。这种设计使得网络能够更好地应对实时通信和对延迟敏感的应用需求。
国内外研究机构及标准化组织已经开展了确定性网络技术的相关研究,并取得了一系列重要成果。例如,IEEE与IEC成立了P60802工作组,研究将二层确定性网络技术应用于工业控制领域;Internet标准规范最主要的国际标准化协会组织IETF(Internet Engineering Task Force)成立了确定性网络工作组,致力于在第2层桥接段和第3层路由段上构建通用架构以建立端到端确定性转发路径。这些研究为确定性网络的推广和应用提供了重要的理论和实践基础。
1、时延可控性
传统网络在数据传输时存在不确定的时延,而确定性网络通过严格控制传输路径和时间参数,确保数据传输的时延具有可预测性。
2、网络拥塞管理
确定性网络采用智能流量管理机制,可以有效预防和处理网络拥塞,确保数据的稳定传输。
3、资源优化
确定性网络通过优化网络资源的利用,确保实时通信和对延迟敏感的应用能够在高效的网络环境中运行。
时间敏感性:确定性网络注重数据传输的时间特性,确保实时数据在网络中的传输遵循严格的时间要求。
流量工程:通过智能的流量工程和路径规划,确定性网络可以避免拥塞,并确保网络资源的最优利用。
硬实时通信:确定性网络支持硬实时通信,即对于某些应用,数据的传输必须在预定的时间内完成,确保实时性和可靠性。
可预测性和稳定性:通过严格的协议和机制,确定性网络提供了更高的可预测性和稳定性,使其成为对延迟敏感的应用的理想选择。
在理解了确定性网络的定义和主要特征后,让我们深入探讨其工作原理,以了解它是如何实现这些特征的。
确定性网络的工作原理涉及多个技术方面,从流量控制到路径规划,以下是确定性网络的核心技术和工作原理:
确定性网络使用专门设计的时间敏感网络协议,以确保数据在网络中的传输能够遵循精确的时间要求。时间敏感网络协议是确定性网络的基础,这些协议负责调度数据包的传输时间,确保实时数据在网络中的传输能够在预定的时间内达到目的地。其中,Time-Sensitive Networking (TSN) 是一种常用的时间敏感网络协议,它定义了多个标准,包括IEEE 802.1Qbv(用于基于时隙的流量调度)、IEEE 802.1Qbu(用于削减帧时延)等,以实现对时延敏感的通信。
通过流量工程和路径规划,确定性网络能够避免网络拥塞,确保数据在网络中的传输路径是最优的。流量工程技术通过智能的流量控制和路由选择,确保网络资源的最优分配,从而提高网络性能。路径规划则负责寻找最短、最可靠的数据传输路径。
如上图,起初基于最短路径优先(Shortest Path First, SPF)协议,流量选择最短的路径(A-C-E)进行数据传输。然而,当多个流量流都选择相同的路径时,可能会出现拥塞,当这条最短路径拥塞时,较长路径 A-B-D-E 可能是更优路线。这就是为什么我们有时需要偏离SPF原则,而采用更为复杂的流量工程策略。通过流量整形、流量监管、路由控制等手段,我们可以优化网络流量的路径选择,避免或减少拥塞,提高网络的可靠性和性能。简单来说,流量工程的目标是确保网络流量能够根据其特性(如优先级、QoS需求等)被合理地分配到不同的路径上,从而避免网络拥塞、提高网络资源利用率。
硬实时通信机制是实现确定性网络中关键数据传输的重要技术,对于一些需要精确控制时延的应用,确保数据的传输在预定的时间内完成。这需要在网络中实施实时调度机制,以确保实时数据包的及时传输。
时间感知整形器(IEEE 802.1Qbv)是一种用于实现硬实时通信机制的技术,它的主要功能是在以太网帧上标识优先级,并将其指派给基于优先级的VLAN Tag。它通过定义时间表来控制队列流量,每个队列在时间表中都有一个时间段,该时间段定义了队列中数据帧的发送窗口。当数据帧到达队列时,时间感知整形器会根据其优先级和时间表进行调度,以确保关键数据帧在预定的时间内发送。
确定性网络依赖于智能网络管理系统,通过监测网络状态、实时调整流量、识别并应对故障等手段,确保网络的稳定性和可用性。智能网络管理系统使用先进的算法和机器学习技术,以适应不断变化的网络条件。
时间同步机制是确保网络中各个设备之间的时间一致性的关键。通过采用时间同步协议,确保网络中的设备对于时间的感知是一致的。这对于协同工作和协议的正确执行非常重要,尤其在需要多设备协同操作的场景。
时间同步的目标是在分布式系统中,使各个节点的时钟保持一致,以及相对时间的一致性,即各个节点之间的计时误差保持在一定范围内。为了实现这一目标,需要充分了解系统中各个节点之间的传输延迟,以便进行精确的调整。线路和交换机中的延迟是影响时间同步精度的主要因素之一,通过测量这些延迟,可以更加准确地估计和补偿传输延时,从而提高时间同步的精度。
通过整合这些关键技术,确定性网络能够提供高度可预测、稳定和可控的通信环境,满足对时延敏感的应用需求,如工业自动化、智能交通系统等。这些技术的协同作用使得确定性网络在实时通信领域具有巨大的潜力和优势。
确定性网络在各种应用领域中都发挥着重要作用,特别是那些对实时通信和时延敏感的应用。以下是一些确定性网络的主要应用领域:
工业自动化是确定性网络的重要应用领域之一。在智能制造、工业物联网等领域,需要实现设备之间的实时通信,以确保生产线的稳定运行。确定性网络能够提供低延迟、高可靠性的网络连接,支持工业控制系统的实时数据传输和远程控制。通过远程监控,可实时监测设备状态,远程诊断和修复问题,减少停机时间。
在交通系统中,对于车辆间通信的实时性要求极高,以支持交通管理、自动驾驶和车辆安全。智能交通系统包括交通信号灯、监控摄像头、传感器等设备,需要实现实时数据采集和传输。确定性网络能够提供低延迟、高可靠性的网络连接,支持智能交通系统的稳定运行。
车联网是另一个确定性网络的典型应用场景。随着自动驾驶技术的不断发展,车辆需要与周围环境和其他车辆进行实时通信,以确保安全和高效的交通流。确定性网络能够为车联网提供可靠的通信链路,支持车辆之间的实时数据传输和紧急制动等安全功能的实现。
在医疗领域,实时数据传输对于远程监护、手术机器人和医疗诊断非常重要。通过确定性网络,医生可以实时接收病人的医疗数据,进行远程诊断和治疗。这不仅可以提高医疗服务的效率,还可以降低医疗成本。确定性网络让手术机器人能够在高度实时和可靠的通信环境中操作,以保证手术的精确性。
虚拟现实(VR)和增强现实(AR)应用也越来越需要低时延、高带宽的通信,以便让用户获得沉浸式的体验。在虚拟会议、培训和娱乐场景中,确定性网络可确保用户间的实时交互和体验。在AR导航方面,可提供低时延的位置信息,支持AR导航和信息叠加。
在电力系统中,实时通信可以让电力配送、智能电网和电力设备的协同运行更加高效。
智能电网:实时监测电网状态,支持电力设备的远程控制和协同运行。
电力配送:通过确定性网络提供电力配送设备之间的实时通信,确保电力传输的稳定性。
这些应用领域突显了确定性网络在实现高效、可靠、时延低的通信方面的价值,为各种关键应用提供了支持。
随着5G技术的不断成熟和广泛应用,越来越多的行业和应用场景开始对通信的可靠性和低延迟提出更高的要求,5G和确定性网络的融合也已经取得了一些显著的进展,但同时也需要解决一些关键技术挑战,例如,如何确保数据传输的可靠性和实时性、如何提高网络资源的利用率和管理效率、如何降低网络建设和运营成本等。针对这些挑战,可以采取一系列技术措施,如优化网络架构、引入边缘计算和云计算技术、采用高可靠性和低延迟的通信协议等。
随着对实时通信和时延敏感应用需求的不断增加,未来确定性网络面临的挑战和解决方案可能包括以下几个方面:
性能提升:随着应用场景的不断拓展,确定性网络需要更高的性能来满足不断增长的需求。其中包括更快的传输速度、更低的延迟、更高的可靠性等方面的提升。这可能需要研发更高效的传输协议、优化网络架构、采用新型传输介质等。
异构网络融合:未来确定性网络需要与现有的互联网、物联网等异构网络进行融合,实现数据和服务的互通互操作。这涉及到不同网络协议的兼容性、网络拓扑结构的复杂性等问题。解决方案可能包括制定统一的技术标准、研发中间件技术等。
数据安全和隐私保护:随着确定性网络的广泛应用,数据安全和隐私保护问题也日益突出。未来需要进一步加强数据加密、访问控制、隐私保护等方面的技术研发和应用推广。
智能化和自动化:未来确定性网络需要具备更高的智能化和自动化水平,能够自适应地处理各种复杂的网络问题。例如人工智能、机器学习等技术的应用。解决方案可能包括研发智能化的网络管理系统、自动化流量控制和路由选择算法等。
可扩展性和灵活性:未来确定性网络需要具备更好的可扩展性和灵活性,能够适应不同规模和不同需求的应用场景。这涉及到如何有效利用资源、降低成本、提高能效等问题。解决方案可能包括采用虚拟化技术、云计算平台等。
综上,未来确定性网络面临的挑战是多方面的,需要从多个方面进行解决。通过技术研发和创新,以及加强国际合作和标准化工作,相信未来确定性网络会取得更大的突破和发展。
为解决确定性网络的挑战,时间敏感网络(TSN)技术应运而生。TSN技术作为确定性网络的一种实现方式,目前已经得到了广泛的应用。TSN技术主要针对工业自动化、车联网、智能交通等领域,提供低延迟、高可靠性的网络连接。
TSN技术能够为工业控制系统提供可靠的通信链路,支持实时数据传输和远程控制,从而提高生产效率和降低成本。在汽车制造生产线中,TSN技术可以确保各个设备之间的实时通信,实现高效的生产流程控制。TSN技术能够为车联网提供可靠的通信链路,支持车辆之间的实时数据传输和安全功能的实现。在智能交通系统中,TSN技术可以确保交通信号灯、监控摄像头、传感器等设备之间的实时通信,提高交通流的安全性和效率。
TSN交换机是TSN技术体系中的关键组成部分,通过提供时间同步、流量控制和低时延的网络通信,解决了传统网络所面临的时延和不确定性问题。目前,国内交换机头部厂商已经开始深入研发,光路科技在TSN技术研发领域已经取得了显著的进展,其FR-TSN系列工业以太网交换机不仅满足了实时通信的需求,还通过先进的流量工程和路径规划技术,解决了网络规模扩展性的问题,确保了网络的高效运行。
FR-TSN交换机作为确定性网络的一种实现方式,为各个行业应用带来了诸多好处。FR-TSN交换机具有高可靠性和稳定性,具有高性能和低延迟的特点,能够满足各种实时通信的需求,保证网络的正常运行和数据的可靠传输。它还具有可扩展性和灵活性,能够适应不同规模和不同需求的应用场景。目前,光路科技在国内智慧交通领域已经成功实现了TSN交换机的落地应用。通过在交通系统中部署FR-TSN解决方案,实现了实时数据传输、智能信号灯控制和车辆协同操作,提高了交通系统的效率和安全性。
未来,随着相关技术的不断发展,TSN技术的应用潜力将进一步得到挖掘。例如,TSN技术可以与人工智能、机器学习等技术结合,实现智能化的网络管理和自适应的网络控制;同时,TSN技术也可以与云计算、边缘计算等技术结合,为大数据和物联网等领域提供更好的数据传输和存储服务。
确定性网络的引入标志着网络通信领域的一次重要变革。通过提供可预测、稳定和时延低的通信环境,确定性网络有效地解决了传统网络在应对实时通信和时延敏感应用方面的局限性。在工业自动化、智能交通、医疗保健等多个领域的成功应用中,确定性网络展现出了其巨大的潜力和广泛的适用性。
TSN技术作为确定性网络的应用已经得到了广泛认可,TSN交换机为确定性网络的应用提供了有力支持。未来,TSN技术的应用将逐渐广泛,为各个行业带来更多的创新和变革。通过标准化和行业合作,TSN技术有望成为推动实时通信和确定性网络发展的核心引擎,为数字化转型提供更可靠的网络基础。
鼓励更多行业采用确定性网络技术是推动数字化转型和提升网络通信质量的关键一步。在未来,随着技术的不断发展和行业标准的完善,确定性网络将成为各行业实现高效、可靠、智能通信的基石。我们呼吁各行业积极采纳确定性网络技术,共同推动网络通信领域的进步,助力社会各个层面的创新和发展。通过共同努力,确定性网络将为我们创造更安全、高效、智能的未来网络环境。
智慧交通是光路科技的核心行业战略之一。自2022年以来,光路科技推出了满足“确定性传输”、“低延时”和“高可靠”需求的TSN时钟敏感网络交换机产品服务,致力于为智慧交通网络通信打造高效、高速和高标准的稳定系统。
在智慧交通系统应用中,路侧单元RSU采用了C-V2X标准。该标准是3GPP全球统一的通信技术标准,是一种基于4G/5G蜂窝网络通信技术演进形成的车用无线通信技术,包括LTE-V2X和5G-V2X。随着该标准在2017年正式确立并得到我国政府的明确支持,我国在智慧高速建设应用中取得了积极推动。RSU支持低时延的V2X数据广播,面向车联网的V2V和车路协同的V2I协作,进一步提升了道路交通效率和道路交通安全。
光路科技的FR-TSN3412系列工业交换机在智慧交通领域得到广泛应用。通过其PTP功能,TSN交换机能够与交通系统的时钟服务器进行通信,实现网络侧和路侧感知设备之间的时钟同步。它可以标记路侧RSU和未来OBU的数量、通信时间、信息、摄像机智能识别业务、毫米波雷达和激光雷达的流量信息,并根据交通业务的优先级进行统一的转发。
在智慧交通系统的网络侧使用TSN交换机FR-TSN3412,可以将整个系统的网络报文转发延迟提高到纳秒级,从而为后续的多业务混合转发情况下的流量调度提供更灵活的策略控制。
方案一:
作为路侧网络设备,FR-TSN交换机汇聚了传输单元、测控单元和传感单元的数据。通过全网时钟服务器进行统一报文时间戳对时,实时地将RSU路侧单元的v2l数据和传感数据等进行交互转发。此外,FR-TSN交换机还能将OBU单元所需的交互报文的传输抖动和时延降到最低。
方案二:
TSN交换机作为区域云下联区域有线专网设备进行设计,通过路段的下联TSN交换机进行工业环网设计。同时,通过TSN交换机的边界时钟BC模式,将区域全网及OBU单元业务报文进行统一精度,以确保网络的稳定性。
正如前面所提到的,无论采用哪种组网连接方案,对于以太网通信来说,特别是在智慧高速的车路协同系统中,车端、路端、人端、应用中心端都需要交互大量的业务报文。交换机作为承载路端核心单元业务、处理大量突发报文的枢纽,其重要性不言而喻。
当同一时刻进入到交换机网络中需要传输的流量超过网络总带宽时,由于带宽不足,就会产生网络阻塞的情况。
如上图所示,以太网交换机的缓存是有限的。当前端所有的接入端设备同时往一个上行端口或者设备转发交互大量的突发报文时,会造成流量拥塞,最终导致数据丢包。在智慧交通应用等工业应用场景中,丢包的成本非常高,因为一些重要的数据丢包可能导致重传机制,过多的重传势必增加数据的延时,进一步造成网络负荷的加重。这种情况往往会极大地降低网络的性能,导致一些不稳定的情况发生。
减少网络拥塞最简单的方式是升级工业交换机端口的带宽,提高端口运载能力。但是这样一来,将会导致前端设备的成本上升。光路科技FR-TSN3412系列工业交换机支持多种流量调度机制,可以在网络拥塞发生的时候,通过流量整形和调度来为关键的流量提供带宽的保障和延时保障。
FR-TSN3412是深圳市光路在线科技有限公司推出的全新一代工业以太网交换机产品。TSN交换机不仅能解决多节点网络的不一致问题,还为标准以太网增加了确定性和可靠性,以确保以太网能够为关键数据的传输提供稳定一致的服务级别。目前,FR-TSN3412支持的时间敏感网络基础协议包括:IEEE 802.1AS、IEEE 802.1Qbv、IEEE 802.1Qci、IEEE 802.1CB和IEEE 802.1Qbu等。
TSN交换机结合了新一代的技术,引导和开发低延迟、低抖动,并具有传输时间确定性的以太网局域网,是传统以太网在汽车等特定应用环境下的增强功能实现。它还可以为需要保持始终连接的关键设备提供冗余机制。此外,作为工业级交换机,FR-TSN3412可以在标准工作温度范围-40℃-85℃下工作,具有IP40防护等级,因此是恶劣环境的完美选择,如工业网络、智能交通系统(ITS),也适用于许多军事和公用事业市场应用,其环境条件超过商业产品规格。
TSN技术已经在智能交通系统中展现出巨大的潜力,特别是在支持低时延、高可靠性的需求下。光路科技研发的TSN交换机在智慧交通领域的应用为实现高效、高速、高标准的智能交通系统提供了重要支持。它通过PTP功能实现了网络侧和路侧设备之间的时钟同步,减少传输抖动和时延,提高了交通网络报文转发的效率。此外,FR-TSN3412系列交换机的流量调度功能有助于降低网络拥塞,提供带宽和延时保障,确保关键数据的传输。综合而言,TSN技术的应用为智能交通系统的发展带来了更高的效率和稳定性。
随着物联网的不断发展,越来越多的设备需要联网,而这些设备通常需要供电才能工作。传统的交换机无法提供电力供应,因此诞生了PoE交换机。本文将详细介绍PoE交换机和普通交换机的区别,并从各个角度全面介绍PoE交换机。
PoE(Power over Ethernet)即“以太网供电”,是一种可以通过网络线缆为网络设备提供电力的技术。PoE技术可以将电力和数据信号同时传输,使得设备不需要额外的电源线缆。PoE技术的原理是在以太网电缆中加入直流电源,使得网络设备可以通过网线直接供电。
PSE设备是指支持PoE技术的网络设备,它是PoE供电系统中的核心部分之一。PSE一般有POE供电器和POE交换机两种形式。它的主要作用是通过以太网线缆传输电力和数据信号,并为受电设备(PD)供电。
PD设备是指在PoE供电系统中需要接受电力供应的网络设备,例如IP电话、摄像头、无线接入点等。PD设备通过以太网线缆从PSE设备获取电力供应,并与PSE设备进行数据通信。
PoE电源是指PoE供电系统中的电力来源。PoE电源的工作原理是将交流电源转换为DC电源,并将电力和数据信号通过以太网线缆传输到网络设备上。PoE电源的功率决定了PSE能同时为多少台PD设备供电。
以太网线缆是连接POE供电器和POE设备之间的媒介,可以将电力和数据信号一起传输到网络设备上。一般采用CAT5、CAT5E、CAT6等类型的以太网线缆,其传输距离根据不同的POE技术版本有所不同。
在PoE供电系统中,PSE设备和PD设备之间的交互是基于IEEE 802.3af/at/bt标准协议来完成的。这些标准协议规定了PSE设备和PD设备之间的电力传输方式、电力传输功率、电力传输距离等关键参数,确保了PoE供电系统的稳定性和可靠性。
PoE交换机是一种能够为网络设备供电的交换机。根据供电方式的不同,PoE交换机可以分为两种类型:一种是采用线端供电方式(End-Span),另一种是采用中继供电方式(Mid-Span)。其中,采用线端供电方式的PoE交换机将电力和数据信号一起传输到网络设备上,而采用中继供电方式的PoE交换机则需要在电缆中插入一个PoE中继器,将电力和数据信号分开传输。
PoE交换机的工作原理是将交换机的电源输出连接到以太网端口,并通过以太网电缆将电力传输到需要供电的设备上。PoE交换机还需要根据设备的需求来确定所需的电力等级,并控制供电的方式和时间。
当网络设备通过以太网线连接到PoE交换机时,PoE交换机会检测设备是否支持PoE技术。如果设备不支持PoE技术,则PoE交换机只会传输数据信号,不会供电。如果设备支持PoE技术,则PoE交换机会将电力和数据信号一起传输到设备上。
目前,PoE交换机的供电标准主要分为三种,分别是IEEE 802.3af(PoE)、IEEE 802.3at(PoE+)、IEEE 802.3bt(PoE++),其中PoE++又根据功率不同分为了两类(Type3和Type4)。下表详细列出了PoE、PoE+和PoE++的规格:
类别 | PoE | PoE+ | PoE++ | PoE++ |
---|---|---|---|---|
IEEE标准 | IEEE 802.3af | IEEE 802.3at | IEEE 802.3bt | IEEE 802.3bt |
PoE类型 | Type 1 | Type 2 | Type 3 | Type 4 |
PSE端口功率 | 15.4W | 30W | 60W | 90W |
PSE电压范围 | 44-57V | 50-57V | 50-57V | 52-57V |
PD最大功率 | 12.95W | 25.5W | 51W | 71W |
PD电压范围 | 37-57V | 42.5-57V | 42.5-57V | 41.1~57V |
最大电流 | 350mA | 600mA | 1.2A | 1.73A |
线缆要求 | Cat3/以上 | Cat5/以上 | Cat5e/以上 | Cat5e/以上 |
使用双绞线 | 2对 | 2对 | 2/4对 | 4对 |
IEEE 802.3af标准是PoE交换机最早的标准,于2003年发布。该标准定义了PoE交换机的最大供电功率为15.4W,最大电压为48V,最大电流为350mA,以及最大传输距离为100米。根据这个标准,PoE交换机可以通过以太网线缆向连接到交换机上的PD设备提供最大15.4W的电力供应,从而实现电力与数据的传输。此标准被用于低功率应用场景。
IEEE 802.3at(PoE+)标准是在IEEE 802.3af标准之后(2019年)发布的,提供了更高的功率传输能力,最高传输功率达到30W。相比于IEEE 802.3af标准,PoE+可以为更多的设备提供足够的功率,例如IP电话、Wi-Fi接入点、IP摄像头、高性能笔记本电脑等。IEEE 802.3at标准还支持双向通讯,使PD可以向PSE发送信息以调整功率需求。
IEEE 802.3bt标准是最新的PoE交换机标准,于2018年发布,也被称为PoE++标准,它可以让一根网线的8条铜芯同时供电,进一步扩展了PoE的功率传输能力,每个端口传输功率可达60W-90W,如果需要,甚至可以达到100W的功率上限。这使得PoE技术可以为更多的设备提供可靠的供电,例如医疗设备、工业设备、高功率LED照明等。为了支持PoE++,PSE和PD需要支持更高的电压和功率传输,需要更先进的硬件设计和更复杂的协商过程。
PoE交换机和普通交换机最大的区别在于是否支持PoE技术。普通交换机只能传输数据信号,不能为设备供电。而PoE交换机可以将电力和数据信号一起传输到网络设备上,为设备提供电力供应。普通交换机需要使用额外的电源适配器或电源线缆来提供电力供应。
PoE交换机可以为支持PoE技术的设备提供电力供应,如IP电话、网络摄像头、无线接入点等。而普通交换机无法为这些设备提供电力。
使用PoE交换机可以将电力和数据信号一起传输到网络设备上,这样可以简化设备的安装,减少布线的工作量。
由于PoE交换机可以为设备供电,因此不需要额外的电源适配器或电源线缆,从而节省了设备成本,也降低了布线的成本。但由于PoE交换机的技术含量较高,其价格比普通交换机要贵一些。
PoE交换机可以为家庭网络中的多种设备提供电力供应,如无线路由器、网络摄像头、IP电话等,使得家庭网络更加智能化和便利化。
在商业应用中,PoE交换机可以为各种支持PoE技术的设备供电,如网络摄像头、无线接入点、电子标牌等。这些设备通常需要安装在较高的地方或不易更换的位置,因此使用PoE技术可以大大简化安装和维护工作。
在工业应用中,PoE交换机可以为各种工业设备供电,如工业相机、传感器、控制器等。这些设备通常需要长期运行,需要较高的可靠性,因此使用PoE技术可以降低故障率和维护成本。
在公共设施中,PoE交换机可以为各种智能设备供电,如智能灯具、智能门锁、智能广告牌等。这些设备分布在广泛的区域内,使用PoE技术可以简化布线和安装工作。
针对IEEE 802.3af、IEEE 802.3at(PoE+)和IEEE 802.3bt(PoE++)这三种类型的PoE交换机,在面临选择时,到底该如何选择?
首先,IEEE 802.3af PoE交换机能够为每个端口提供最大15.4瓦的电力,适用于低功率的网络设备,如IP电话、IP摄像头、无线接入点等,而且价格较为经济实惠。对于功率要求较高的设备,就需要选用IEEE 802.3at(PoE+)交换机,其可以为每个端口提供最大30瓦的电力输出。这种类型的交换机可以支持更多的设备,如高性能摄像头、IP电话和无线接入点等,且功率输出更为稳定,可靠性更高。
当用户需要连接更多的高功率设备时,就需要使用IEEE 802.3bt(PoE++)交换机,它的端口功率更高,可以支持71W的设备,能满足工业、商业和医疗等领域对于高功率设备的需求。相较于其他两种PoE交换机,PoE++交换机的价格更高,但其可为用户提供更强大的功率输出,可适用于更广泛的应用场景。下图根据PoE的四个类别列出了支持的PD:
需要注意的是,PoE标准向下兼容,比如PoE++交换机也可以用在小功率设备上。
工业PoE交换机,即拥有PoE供电功能的工业级以太网交换机,是一种广泛应用于各种工业控制系统中的网络设备,它能够在恶劣环境下保证稳定的数据传输和供电,相比非工业级PoE交换机,具有更多的应用场景。以下是一些典型的应用场景:
工业PoE交换机可用于交通信号灯、高速公路监控系统、收费站视频监控等。智能交通系统需要大量的监控摄像头和其他设备进行实时监测和控制,而这些设备通常需要长时间稳定的数据传输和供电,因此工业PoE交换机可以为这些设备提供高效的网络连接和可靠的电源支持。
在智能制造和工业自动化应用中,各种传感器和执行器需要实时传输数据和接收控制信号,而这些设备往往需要在严酷的环境下进行操作,如高温、低温、高湿度等。使用工业PoE交换机可以确保这些设备的稳定供电和高效通信,从而提高整个系统的可靠性和效率。
工业PoE交换机可用于智能电网、智能电表、电力调度中心等领域。这些应用需要长期稳定运行,同时需要保证数据和电力的传输安全和可靠性。
工业PoE交换机在综合管廊的应用主要是通过其高可靠性和宽温设计来满足在恶劣环境下的数据传输需求。这种类型的交换机通常采用紧凑型和防护性能强的外壳设计,一般要求达到IP40防护等级,可防尘、防水、防震、抗腐蚀。
综合管廊中需要部署大量的监控摄像头,这些设备需要稳定的数据和电力供应。而工业PoE交换机能够通过一个网线为这些设备提供数据和电力,同时还能提供QoS和VLAN等功能,确保监控数据的实时传输和安全存储。工业PoE交换机可以支持多种协议和网络拓扑结构,能轻松地与其他设备集成,使得它在综合管廊的监控、安防、智能照明等应用场景中发挥着越来越重要的作用。
在现代智能楼宇系统中,各种传感器、摄像头和其他设备需要在高速网络上进行通信,并且需要长时间稳定的供电。这些设备往往布置在一些难以到达的区域,如顶楼或地下室等地方,因此使用工业PoE交换机可以避免由于供电和网络连接不稳定而导致的问题。
总的来说,工业PoE交换机的应用场景非常广泛,尤其是在需要稳定性和可靠性的环境中,如工业、制造、交通、能源等领域。随着物联网和工业4.0等技术的发展,工业PoE交换机的应用前景也将越来越广阔。
近年来,由于PoE技术具有灵活便利和经济实惠等优点,在网络基础设施中的应用越来越广泛,PoE交换机市场也随之呈现快速增长的趋势。
推动PoE交换机市场增长的一个重要因素是物联网(IoT)的发展。随着连接设备数量的增加,PoE交换机的需求也随之增加,因为它们可以为这些设备提供供电和连接功能,无需额外的电源供应和布线。
此外,VoIP(网络语音)和IP摄像机的不断普及也为PoE交换机的需求增长做出了贡献。PoE交换机为这些设备提供了便捷且经济实惠的供电和网络集成解决方案。
随着对智能建筑和智能城市的需求不断增加,PoE交换机的采用也预计会进一步增加。PoE交换机可以为各种设备提供供电和连接功能,包括照明、传感器和门禁系统,成为智能建筑和城市基础设施的必要组成部分。
随着技术的不断发展,POE交换机将会具备更高的功率供应能力、更高的安全性和稳定性、更加智能化和自动化的特点,以满足日益增长的网络需求。
PoE类型 | 交换机型号 | 交换机名称 | 交换机图片 |
---|---|---|---|
PoE / PoE+ | FR-7M3208 | 网管千兆2光8电工业以太网交换机 | |
PoE / PoE+ | FR-7M3408F | Bypass光保护工业交换机8电口2SFP管理型 | |
PoE / PoE+ | FR-7N3005 | 全千兆5电口工业以太网交换机 | |
PoE / PoE+ | FR-5A3208P | 千兆2光8电智能POE交换机 | |
PoE / PoE+ | FR-5A3216P | 千兆2光16电智能POE交换机 | |
PoE / PoE+ | FR-5M3424P | 千兆4光24电管理型POE交换机 | |
PoE++ | FR-7M3424 | 网管型工业环网交换机全千兆24电口4光口导轨式 | |
PoE++ | FR-7M348F | 环网光纤交换机-千兆二层网管交换机16电口12光口 | |
PoE++ | FR-9M348F | 二层网管工业交换机千兆12光16电 | |
PoE++ | FR-9M3424 | 二层网管工业交换机千兆4光24电 | |
PoE++ | FR-9T44F8 | 万兆三层交换机-4个万兆光口+16个千兆光口+8个千兆Combo |
随着城市化进程的加速和人口增长,交通拥堵、事故频发等问题日益突出。而智慧交通的出现正是为了解决这些问题。智慧交通是指通过物联网、大数据、人工智能等技术手段,对交通系统进行智能化、信息化的管理和控制,以提高交通运行效率、保障交通安全、改善交通环境。在智慧交通中,工业交换机作为网络通信的关键设备,发挥着重要的作用。
现代城市的交通系统不仅要保障车辆行驶的安全,还要对交通信息进行准确、快速、可靠的传输和处理。工业交换机可以提供高效稳定的数据传输和管理服务,帮助交通设备之间实现数据共享和通讯互联。
工业交换机在智慧交通中的应用非常广泛,下面将分别从交通监控、智能信号灯、高速公路ETC、和公交地铁等系统中进行了解。
智能交通离不开交通监控,工业交换机在交通监控中起着重要的作用。随着城市化进程的加速,交通管控的压力越来越大,同时对交通监控的要求也越来越高。通过工业交换机可以将多个视频流汇集到监控中心进行处理和管理,以实现对交通状况的实时监控和预警。此外,为了更好的保障交通安全,交通监控系统还需要保证高速、大带宽和高质量的视频传输。这就需要工业交换机支持高速的视频数据传输和多路视频流的高效处理,保证传输的稳定性和可靠性。
交通信号灯控制系统是交通控制的重要手段之一。而工业交换机在这个系统中也扮演着非常重要的角色。通过工业交换机可以对交通信号灯的控制信号进行传输和管理,以保证交通信号灯的同步性和稳定性。此外,智能信号灯系统还需要对交通信号灯的控制信号进行实时的优化和调整,以适应不同时间段和交通流量的变化。这就需要工业交换机支持高速、大带宽和实时的数据传输和处理,以保证控制信号的及时性和准确性。
工业交换机在高速公路ETC(电子收费)系统中扮演着重要的角色。工业交换机可以为ETC系统提供高速稳定的数据传输。在高速公路上,大量的车辆需要在短时间内完成收费,因此数据传输速度必须非常快。同时,ETC系统的数据量也非常大,包括车辆信息、收费信息、交通流量等,这些数据需要通过工业交换机进行快速、高效的传输,以确保整个系统的正常运行。
工业交换机可以为ETC系统提供多层次的容错机制,包括链路备份、数据备份、网络负载均衡等,以确保ETC系统在各种复杂环境下都能够正常运行。ETC系统与金钱相关,必须保证安全性,工业交换机可以为ETC系统提供多层次的安全保障措施,包括数据加密、入侵检测、访问控制等,以保护ETC系统中的数据不被恶意攻击或篡改。
工业交换机可以连接公交车调度系统,实现公交车的智能调度。通过采集公交车的位置信息和乘客的需求信息,公交车调度系统可以实现对公交车的智能调度和优化。例如,可以根据乘客需求的变化来调整公交车的行驶路线和发车频率,从而提高公交车的服务质量和效率。
地铁交通运营是智慧交通领域的重要组成部分,需要实现车站、车辆、信号等多个方面的数据监控和管理。工业交换机可以协助车站管理系统、列车通信系统、信号控制系统之间的数据交互,并确保数据的实时性和准确性。这些数据可以用于智能列车运营、实时客流监测、轨道设备监测等应用,进而提高地铁交通的效率和安全性。
作为工业以太网交换机领域的知名厂商,光路科技(FIBERROAD)已经在智慧交通领域中做出了很多积极的贡献。光路科技的工业交换机被广泛应用于智慧交通领域的实际项目中,如高速公路ETC系统、城市轨道交通控制系统、智能路灯系统等。这些应用中,光路科技的工业交换机为智能交通领域的信息通信提供了坚实的保障,为人们的出行带来了更为安全、高效的体验。
除了在实际项目中的应用外,光路科技还不断地进行技术研发和创新,不断提升工业交换机的性能和功能,以更好地适应智慧交通领域的需求。其高效、可靠、安全的网络设备为智慧交通系统的建设提供了有力支持,为交通信息化的发展注入了新的活力。
未来,随着智慧城市建设的加速推进,智能交通领域的发展也将迎来更广阔的市场空间。光路科技将继续发挥自身的技术和产品优势,助力智慧城市和智能交通的建设和进步。
总之,工业交换机在智慧交通中的应用越来越广泛,为智慧交通的信息化和数字化提供了坚实的基础。通过工业交换机的应用,可以让城市交通系统更加智能化、高效化,为城市交通的发展提供强有力的支撑。
3月30-31日,第二十五届中国高速公路信息化大会暨技术产品博览会在福州海峡国际会展中心盛大召开,光路科技携Bypass交换机、TSN交换机及高速公路应用方案亮相展会现场。
中国高速公路信息化大会暨技术产品博览会(简称:CEIC)由中国公路学会主办,是我国交通信息化领域规模和影响力最大的专业性会议。本届会议以“创新·融合·高质量发展”为主题,深入探讨5G、大数据、云计算、人工智能、区块链、数字孪生等新一代信息技术在高速公路建设、管理、运营及出行服务等众多领域的创新应用和产业融合,并集中展示最新、最热的高速公路信息化技术产品研发、应用成果。本次大会展出面积5万平方米,有近300家国内外厂商参展。
为助力智慧高速高质量发展,光路科技研发了一系列用于高速公路应用场景的工业交换机产品及解决方案,并亮相本次展会。
在智能交通项目中,室外环境在温度、湿度、供电条件、电磁干扰等方面比数据中心机房环境更恶劣,因此一般采用高可靠性的工业级设备组网,工业交换机则起到了关键作用。光路科技展出的Bypass交换机,采用工业级设计,可在恶劣环境下工作。Bypass交换机通过以太网环网、生成树协议、旁路保护、链路聚合、链路备份等技术实现了高可靠的链路保护。
由于智能交通和工业自动化的高速发展,越来越多的系统对以太网有了更高的需求,它们需要实时和安全的通信。比如工业自动化中的机器必须共享其数据以进行同步、控制、分析和优化。汽车和交通行业也离不开可靠的通信,尤其是在车辆越来越自动化的今天。常规以太网不能满足这些系统的实时通信要求,因为它们需要确定通信延迟时间。
本次展会,光路科技展示了最新的时间敏感网络(TSN)解决方案,TSN交换机通过以太网提供完全确定的实时通信,保证了通信延迟时间。配有冗余协议的TSN以太网交换机,对于需要实时和安全关键通信的系统来说非常有吸引力。TSN交换机在汽车、工业自动化和能源生产中将逐渐使用,TSN技术将会在工业物联网和工业4.0中发挥关键作用。
光路产品已经获得数十项软件与技术专利,远销80多个国家和地区,设备连接超过1800万节点,已应用于智慧高速、综合管廊、电力传输、煤矿、铁路等诸多领域, 参与多个国内外重点项目,如甘肃省高速公路云联网、吉林省ETC改造、宜昭高速机电二期、南京地铁四号线、杭州紫金港电力管廊、北京平安城市、吉尔吉斯斯坦安全城市、智利5G网络建设。
未来,光路科技将持续聚焦光通信产品在智慧高速中的应用,助力高速公路信息化和智能化转型升级。光路科技将凭借深厚的技术积累和丰富的实践经验,与产业上下游形成合力,共同推动高速公路信息化建设及新技术新产品应用。
目前世界上超过 55% 的人口居住在城市(1980 年:39%)。在欧洲,这个数字甚至更高——欧洲大陆约 75% 的人口是城市居民。城市并不是唯一受欢迎的居住地。它们也是经济强国、物流中心、行政中心、创新驱动力、趋势的先驱和有吸引力的人才目的地。
市场报告显示 ,2020年欧洲智慧城市物联网市场价值325亿美元,预计到2027年将达到902亿美元,2020年复合年增长率为15.7%。预测期为2021年至2027年。
世界城市人口从 1950 年的 7.51 亿增加到 2018 年的 42 亿,据联合国估计,到 2050 年将达到 77 亿,占世界人口的 68%。智慧城市可以提供一种使用技术和数据管理人口变化的方法。许多最有前途的城市都在欧洲。当前世界十大“智慧城市”里面,欧洲占据了5席。
智慧城市是利用数字和电信技术提高传统网络和服务效率的地方,以造福居民和企业。欧盟计划2030实现100座气候中和智慧城市的全新目标,在城市中构建一个生态化、具有试错空间、并不断完善进化的应用创新“生活实验室”(living labs)。从欧洲智慧城市的以往实践来看,“生活实验室”在伦敦、瑞典、巴塞罗那等城市或国家皆以不同形式存在并发挥着各自的价值。
重大的技术、经济和环境变化引起了人们对智慧城市的兴趣增加,包括气候变化、冠状病毒 (COVID-19) 爆发、人口老龄化、城市人口增长以及公共财政压力。 在欧洲,欧洲智慧城市和社区创新伙伴关系 (EIP-SCC) 是欧盟委员会支持的一项倡议,它将城市、工业、小型企业 (SME)、银行和研究机构聚集在一起。它旨在通过更可持续的综合解决方案改善城市生活,并解决来自不同政策领域的城市特定挑战,如能源、智能交通、平安城市以及信息通信技术。
巴塞罗那通常被认为是世界上“最聪明”的城市之一,早在2010年就成为公认的智慧城市。在1990年经历了一段经济停滞和失业之后,巴塞罗那当局认识到需要转变城市经济,促进基于知识产业、现代城市旅游和全民优质基础设施的新经济。2015年,巴塞罗那进一步网络转型,开发5G网络和私有基础设施,比如5G无人驾驶公交车。目前巴塞罗那已经建造了3000多个城市机柜来容纳关键的技术基础设施,拥有一个难得的机会来推进数字化转型,以更智能的技术构建未来。
智慧城市应对日益增长的城市化和气候变化带来的挑战。 它通过强调数字化转型带来的措施和实践,为可持续城市带来了一个新的维度,这要归功于通过无线技术和云传输数据的连接对象和工具的智能网络。智慧城市为整体城市发展带来全新视角。它们由一个围绕多个轴心的框架组成——电信服务、能源管理、智能移动,以及智能家居等基础设施。
由于智慧城市如此依赖无线技术和云计算,因此获得高质量、超快速的连接和电信服务对于顺利运行至关重要。因此,在法国城市实施5G是这些项目的里程碑之一。尽管遭到谴责,但5G现已在法国成为现实,第一个网络于 2020 年 11 月启用。马赛是该国拥有最多 5G 天线的法国城市,其数量几乎是巴黎和蒙彼利埃的两倍。至于移动运营商,Orange 是该领域的领导者,已在法国安装了 367 根 5G 天线。
能源管理是智慧城市面临的主要挑战,无论是管理废物、监测空气质量还是二氧化碳排放。智能电表、燃气表和水表可以让消费者根据实际消费情况降低成本,并适应他们的需求。智能电网的安装是法国实施最多的项目之一。 这些电网是一个网络,可以通过消费者和供应商之间的通信实现更好的电力分配。实时管理电流以限制损失。
智能交通处于不同行业的十字路口:交通运输、能源、环境和数字化。此外,它还扩展到交通管理或道路安全等外围部门。这种复杂性是这个问题带来的挑战的核心,它围绕服务和基础设施展开。 智能汽车是这项新技术带来的困境的一个完美例子,因为许多用户质疑这些新型车辆的安全性。 但是,这些汽车旨在协助驾驶、在发生危险或事故风险时管理控制以及停车。 在法国,智能汽车的车队正在迅速增长,在法国街头也越来越受欢迎。
查看光路科技整理的完整报告:2022年欧洲智慧城市